Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 437
Filtrar
1.
ACS Appl Mater Interfaces ; 16(14): 17285-17299, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38539044

RESUMO

Cytoprotective autophagy and an immunosuppressive tumor microenvironment (TME) are two positive promoters for tumor proliferation and metastasis that severely hinder therapeutic efficacy. Inhibiting autophagy and reconstructing TME toward macrophage activation simultaneously are of great promise for effective tumor elimination, yet are still a huge challenge. Herein, a kind of dendrimer-based proton sponge nanocomposites was designed and constructed for tumor chemo/chemodynamic/immunotherapy through autophagy inhibition-promoted cell apoptosis and macrophage repolarization-enhanced immune response. These obtained nanocomposites contain a proton sponge G5AcP dendrimer, a Fenton-like agent Cu(II), and chemical drug doxorubicin (DOX). When accumulated in tumor regions, G5AcP can act as an immunomodulator to realize deacidification-promoted macrophage repolarization toward antitumoral type, which then secretes inflammatory cytokines to activate T cells. They also regulate intracellular lysosomal pH to inhibit cytoprotective autophagy. The released Cu(II) and DOX can induce aggravated damage through a Fenton-like reaction and chemotherapeutic effect in this autophagy-inhibition condition. Tumor-associated antigens are released from these dying tumor cells to promote the maturity of dendritic cells, further activating T cells. Effective tumor elimination can be achieved by this dendrimer-based therapeutic strategy, providing significant guidance for the design of a promising antitumor nanomedicine.


Assuntos
Dendrímeros , Nanocompostos , Neoplasias , Humanos , Prótons , Linhagem Celular Tumoral , Dendrímeros/farmacologia , Neoplasias/tratamento farmacológico , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Autofagia , Imunidade , Macrófagos , Nanocompostos/uso terapêutico , Apoptose , Microambiente Tumoral
2.
Chem Rec ; 24(4): e202400010, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38501833

RESUMO

Layered double hydroxides (LDH) are a class of functional anionic clays that typically consist of orthorhombic arrays of metal hydroxides with anions sandwiched between the layers. Due to their unique properties, including high chemical stability, good biocompatibility, controlled drug loading, and enhanced drug bioavailability, LDHs have many potential applications in the medical field. Especially in the fields of bioimaging and tumor therapy. This paper reviews the research progress of LDHs and their nanocomposites in the field of tumor imaging and therapy. First, the structure and advantages of LDH are discussed. Then, several commonly used methods for the preparation of LDH are presented, including co-precipitation, hydrothermal and ion exchange methods. Subsequently, recent advances in layered hydroxides and their nanocomposites for cancer imaging and therapy are highlighted. Finally, based on current research, we summaries the prospects and challenges of layered hydroxides and nanocomposites for cancer diagnosis and therapy.


Assuntos
Nanocompostos , Neoplasias , Humanos , Hidróxidos/química , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Nanocompostos/uso terapêutico , Nanocompostos/química
3.
ACS Biomater Sci Eng ; 10(3): 1494-1506, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38414275

RESUMO

The use of hemoperfusion adsorbents for the removal of bilirubin in patients with liver failure has become a critical treatment. However, the insufficient clearance of bilirubin and the possibility of bacterial infection during hemoperfusion limit the application. In this work, we designed a novel antibacterial bilirubin adsorbent (PSVT) through the suspension polymerization reaction between double-bond functionalized TiO2 nanoparticles and styrene. PSVT showed an excellent bilirubin adsorption ability and antibacterial performance, ensuring efficient clearance of bilirubin in liver failure patients during hemoperfusion and preventing bacterial infection. The experimental results indicated that TiO2 was uniformly dispersed in the microspheres, which improved the mesoporous structure and increased the specific surface area. Composite adsorbent PSVT showed an exceptional bilirubin adsorption capacity, with the maximum adsorption capacity reaching 24.3 mg/g. In addition, the introduction of TiO2 endowed PSVT with excellent antibacterial ability; the ultimate antibacterial rates against Escherichia coli and Staphylococcus aureus reached 97.31 and 96.47%, respectively. In summary, PSVT served as a novel antibacterial bilirubin adsorbent with excellent bilirubin clearance capacity and antibacterial performance, providing excellent application prospects for treating liver failure patients.


Assuntos
Infecções Bacterianas , Hemoperfusão , Falência Hepática , Nanocompostos , Humanos , Bilirrubina/química , Poliestirenos/química , Hemoperfusão/métodos , Nanocompostos/uso terapêutico
4.
Int J Nanomedicine ; 19: 1041-1054, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38317849

RESUMO

Purpose: The search for effective and low-risk treatment methods for colorectal cancer (CRC) is a pressing concern, given the inherent risks and adverse reactions associated with traditional therapies. Photothermal therapy (PTT) has emerged as a promising approach for cancer treatment, offering advantages such as non-radiation, non-invasiveness, and targeted treatment. Consequently, the development of nanoparticles with high stability, biocompatibility, and photothermal effects has become a significant research focus within the field of PTT. Methods: In this study, TiO2-Ti3C2 nanocomposites were synthesized and characterized, and their photothermal conversion efficiency in the near-infrared region II (NIR-II) was determined. Then studied the in vivo and in vitro photothermal activity and anti-tumor effect of TiO2-Ti3C2 in human colorectal cancer cell lines and nude mice subcutaneous tumor model. Results: The results showed that TiO2-Ti3C2 nanocomposites have strong absorption ability in the NIR-II, and have high photothermal conversion efficiency under 1064 nm (0.5 W/cm2, 6 min) laser stimulation. In addition, in vitro experiments showed that TiO2-Ti3C2 nanocomposites significantly inhibited the invasion, migration, and proliferation of colorectal cancer cells, and induced cell apoptosis; in vivo, experiments showed that TiO2-Ti3C2 nanocomposites-mediated PTT had good biocompatibility and efficient targeted inhibition of tumor growth. Conclusion: In conclusion, TiO2-Ti3C2 nanocomposites can be used as NIR-II absorption materials in PTT to suppress the invasion, migration, and proliferation of colorectal cancer cells, induce colorectal cancer cell apoptosis, and thus inhibit the development of CRC. Therefore, TiO2-Ti3C2 nanocomposites can be used as potential anti-tumor drugs for photothermal ablation of colorectal cancer cells.


Assuntos
Antineoplásicos , Neoplasias Colorretais , Nanocompostos , Neoplasias , Animais , Camundongos , Humanos , Camundongos Nus , Titânio , Neoplasias/tratamento farmacológico , Antineoplásicos/farmacologia , Nanocompostos/uso terapêutico , Fototerapia , Neoplasias Colorretais/tratamento farmacológico , Linhagem Celular Tumoral
5.
Biomater Adv ; 158: 213763, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38227988

RESUMO

Biofilm-mediated implant-associated infections are one of the most serious complications of implantation surgery, posing a grave threat to patient well-being. Effectively addressing bacterial infections is crucial for the success of implantation procedures. In this study, we prepared a bismuth sulfide silver@carbon quantum dot composite coating (AgBiS2@CQDs/Ti) on a medical titanium surface by surface engineering design to treat implant-associated infections. The photocatalytic/photothermal activity test results confirmed the excellent photogenerated ROS and photothermal properties of AgBiS2@CQDs/Ti under near-infrared laser irradiation. In vitro antibacterial and in vivo anti-infection experiments showed that the coating combined with photodynamic and photothermal therapies to eradicate bacteria and disrupt mature biofilms under 1064 nm laser irradiation. Consequently, AgBiS2@CQDs/Ti shows promise as an implant coating for treating implant-associated infections post-surgery, thereby enhancing the success rate of implantation procedures. This study also provides a new idea for combating implant-associated infections.


Assuntos
Nanocompostos , Fotoquimioterapia , Humanos , Terapia Fototérmica , Titânio , Raios Infravermelhos , Nanocompostos/uso terapêutico
6.
Nanomedicine (Lond) ; 19(3): 255-275, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38275154

RESUMO

Nanotechnology has revolutionized the field of bone regeneration, offering innovative solutions to address the challenges associated with conventional therapies. This comprehensive review explores the diverse landscape of nanomaterials - including nanoparticles, nanocomposites and nanofibers - tailored for bone tissue engineering. We delve into the intricate design principles, structural mimicry of native bone and the crucial role of biomaterial selection, encompassing bioceramics, polymers, metals and their hybrids. Furthermore, we analyze the interface between cells and nanostructured materials and their pivotal role in engineering and regenerating bone tissue. In the concluding outlook, we highlight emerging frontiers and potential research directions in harnessing nanomaterials for bone regeneration.


Assuntos
Nanocompostos , Nanotecnologia , Materiais Biocompatíveis/uso terapêutico , Materiais Biocompatíveis/química , Regeneração Óssea , Nanocompostos/uso terapêutico , Nanocompostos/química , Engenharia Tecidual
7.
ACS Nano ; 18(5): 4269-4286, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38270104

RESUMO

The repair of diabetic wounds remains challenging, primarily due to the high-glucose-derived immune inhibition which often leads to the excessive inflammatory response, impaired angiogenesis, and heightened susceptibility to infection. However, the means to reduce the immunosuppression and regulate the conversion of M2 phenotype macrophages under a high-glucose microenvironment using advanced biomaterials for diabetic wounds are not yet fully understood. Herein, we report two-dimensional carbide (MXene)-M2 macrophage exosome (Exo) nanohybrids (FM-Exo) for promoting diabetic wound repair by overcoming the high-glucose-derived immune inhibition. FM-Exo showed the sustained release of M2 macrophage-derived exosomes (M2-Exo) up to 7 days and exhibited broad-spectrum antibacterial activity. In the high-glucose microenvironment, relative to the single Exo, FM-Exo could significantly induce the optimized M2a/M2c polarization ratio of macrophages by activating the PI3K/Akt signaling pathway, promoting the proliferation, migration of fibroblasts, and angiogenic ability of endothelial cells. In the diabetic full-thickness wound model, FM-Exo effectively regulated the polarization status of macrophages and promoted their transition to the M2 phenotype, thereby inhibiting inflammation, promoting angiogenesis through VEGF secretion, and improving proper collagen deposition. As a result, the healing process was accelerated, leading to a better healing outcome with reduced scarring. Therefore, this study introduced a promising approach to address diabetic wounds by developing bioactive nanomaterials to regulate immune inhibition in a high-glucose environment.


Assuntos
Diabetes Mellitus , Exossomos , Nanocompostos , Nitritos , Elementos de Transição , Humanos , Cicatrização , Células Endoteliais , Exossomos/metabolismo , Fosfatidilinositol 3-Quinases , Diabetes Mellitus/metabolismo , Glucose/metabolismo , Nanocompostos/uso terapêutico
8.
Int J Biol Macromol ; 260(Pt 2): 129391, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38242413

RESUMO

The nanotechnology is an interdisciplinary field that has become a hot topic in cancer therapy. Metal-organic frameworks (MOFs) are porous materials and hybrid composites consisted of organic linkers and metal cations. Despite the wide application of MOFs in other fields, the potential of MOFs for purpose of cancer therapy has been revealed by the recent studies. High surface area and porosity, significant drug loading and encapsulation efficiency are among the benefits of using MOFs in drug delivery. MOFs can deliver genes/drugs with selective targeting of tumor cells that can be achieved through functionalization with ligands. The photosensitizers and photo-responsive nanostructures including carbon dots and gold nanoparticles can be loaded in/on MOFs to cause phototherapy-mediated tumor ablation. The immunogenic cell death induction and increased infiltration of cytotoxic CD8+ and CD4+ T cells can be accelerated by MOF platforms in providing immunotherapy of tumor cells. The stimuli-responsive MOF platforms responsive to pH, redox, enzyme and ion can accelerate release of therapeutics in tumor site. Moreover, MOF nanocomposites can be modified ligands and green polymers to improve their selectivity and biocompatibility for cancer therapy. The application of MOFs for the detection of cancer-related biomarkers can participate in the early diagnosis of patients.


Assuntos
Nanopartículas Metálicas , Estruturas Metalorgânicas , Nanocompostos , Neoplasias , Humanos , Estruturas Metalorgânicas/química , Ouro , Biomimética , Fototerapia , Sistemas de Liberação de Medicamentos , Neoplasias/diagnóstico , Neoplasias/tratamento farmacológico , Nanocompostos/uso terapêutico
9.
Biomaterials ; 305: 122467, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38224643

RESUMO

Impaired angiogenesis, bacterial infection, persistent severe pain, exacerbated inflammation, and oxidative stress injury are intractable problems in the treatment of chronic diabetic ulcer wounds. A strategy that effectively targets all these issues has proven challenging. Herein, an in-situ sprayable nanoparticle-gel composite comprising platinum clusters (Pt) loaded-mesoporous polydopamine (MPDA) nanoparticle and QX-314-loaded fibrin gel (Pt@MPDA/QX314@Fibrin) was developed for diabetic wound analgesia and therapy. The composite shows good local analgesic effect of QX-314 mediated by near-infrared light (NIR) activation of transient receptor potential vanilloid 1 (TRPV1) channel, as well as multifunctional therapeutic effects of rapid hemostasis, anti-inflammation, antioxidation, and antibacterial properties that benefit the fast-healing of diabetic wounds. Furthermore, it demonstrates that the composite, with good biodegradability and biosafety, significantly relieved wound pain by inhibiting the expression of c-Fos in the dorsal root ganglion and the activation of glial cells in the spinal cord dorsal horn. Consequently, our designed sprayable Pt@MPDA/QX314@Fibrin composite with good biocompatibility, NIR activation of TRPV1 channel-mediated QX-314 local wound analgesia and comprehensive treatments, is promising for chronic diabetic wound therapy.


Assuntos
Diabetes Mellitus , Compostos de Diazônio , Lidocaína/análogos & derivados , Nanocompostos , Piridinas , Ratos , Animais , Dor , Analgésicos/uso terapêutico , Nanocompostos/uso terapêutico , Fibrina , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico
10.
Nanoscale ; 16(4): 1633-1649, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38168813

RESUMO

Over the years, bioinspired mineralization-based approaches have been applied to synthesize multifunctional organic-inorganic nanocomposites. These nanocomposites can address the growing demands of modern biomedical applications. Proteins, serving as vital biological templates, play a pivotal role in the nucleation and growth processes of various organic-inorganic nanocomposites. Protein-mineralized nanomaterials (PMNMs) have attracted significant interest from researchers due to their facile and convenient preparation, strong physiological activity, stability, impressive biocompatibility, and biodegradability. Nevertheless, few comprehensive reviews have expounded on the progress of these nanomaterials in biomedicine. This article systematically reviews the principles and strategies for constructing nanomaterials using protein-directed biomineralization and biomimetic mineralization techniques. Subsequently, we focus on their recent applications in the biomedical field, encompassing areas such as bioimaging, as well as anti-tumor, anti-bacterial, and anti-inflammatory therapies. Furthermore, we discuss the challenges encountered in practical applications of these materials and explore their potential in future applications. This review aspired to catalyze the continued development of these bioinspired nanomaterials in drug development and clinical diagnosis, ultimately contributing to the fields of precision medicine and translational medicine.


Assuntos
Nanocompostos , Neoplasias , Humanos , Medicina de Precisão , Biomimética , Nanocompostos/uso terapêutico , Nanomedicina Teranóstica , Neoplasias/terapia
11.
Angew Chem Int Ed Engl ; 63(2): e202310252, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38010197

RESUMO

Bone metastasis is a type of metastatic tumors that involves the spreads of malignant tumor cells into skeleton, and its diagnosis and treatment remain a big challenge due to the unique tumor microenvironment. We herein develop osteoclast and tumor cell dual-targeting biomimetic semiconducting polymer nanocomposites (SPFeNOC ) for amplified theranostics of bone metastasis. SPFeNOC contain semiconducting polymer and iron oxide (Fe3 O4 ) nanoparticles inside core and surface camouflaged hybrid membrane of cancer cells and osteoclasts. The hybrid membrane camouflage enables their targeting to both metastatic tumor cells and osteoclasts in bone metastasis through homologous targeting mechanism, thus achieving an enhanced nanoparticle accumulation in tumors. The semiconducting polymer mediates near-infrared (NIR) fluorescence imaging and sonodynamic therapy (SDT), and Fe3 O4 nanoparticles are used for magnetic resonance (MR) imaging and chemodynamic therapy (CDT). Because both cancer cells and osteoclasts are killed synchronously via the combinational action of SDT and CDT, the vicious cycle in bone metastasis is broken to realize high antitumor efficacy. Therefore, 4T1 breast cancer-based bone metastasis can be effectively detected and cured by using SPFeNOC as dual-targeting theranostic nanoagents. This study provides an unusual biomimetic nanoplatform that simultaneously targets osteoclasts and cancer cells for amplified theranostics of bone metastasis.


Assuntos
Neoplasias Ósseas , Nanocompostos , Nanopartículas , Neoplasias , Humanos , Polímeros , Medicina de Precisão , Biomimética , Nanomedicina Teranóstica/métodos , Neoplasias Ósseas/diagnóstico por imagem , Neoplasias Ósseas/terapia , Nanocompostos/uso terapêutico , Linhagem Celular Tumoral , Microambiente Tumoral
12.
Adv Healthc Mater ; 13(5): e2302634, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37992213

RESUMO

Second near-infrared (NIR-II) mild photothermal therapy with higher tissue penetration depth and less damage to healthy tissues is emerging as an attractive antitumor modality, but its therapeutic efficiency is dramatically suppressed by the resistance of heat shock proteins (HSPs). As a widely explored photothermal agent, the application of polydopamine (PDA) in the NIR-II region is hampered by low photothermal conversion efficiency (PCE). Herein, its PCE in the NIR-II region is improved by developing novel hollow cavity CaO2 @PDA nanocomposites through chelation-induced diffusion of inner core Ca2+ to the shell PDA to facilitate multiple reflections of laser in the cavity. Upon pH-responsive degradation of CaO2 , its structure is transformed into a stacked "nano-mesh" with excellent light absorption and an enlarged effective irradiation area. Overloading of Ca2+ ions not only induces downregulation of HSPs but also enhances interference of light on membrane potential, which further aggravate mitochondrial dysfunction and reduce the thermotolerance of tumor cells, promoting efficient mild hyperthermia of PDA in the NIR-II region.


Assuntos
Hipertermia Induzida , Nanocompostos , Nanopartículas , Polímeros , Indóis/farmacologia , Indóis/química , Fototerapia , Nanocompostos/uso terapêutico , Nanocompostos/química , Concentração de Íons de Hidrogênio , Nanopartículas/química
13.
Chemistry ; 30(10): e202302961, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38014860

RESUMO

The single-functionality of traditional chemodynamic therapy (CDT) reagents usually limits the therapeutic efficacy of cancer treatment. Synergistic nanocomposites that involve cascade reaction provide a promising strategy to achieve satisfactory anticancer effects. Herein, a cuprous-based nanocomposite (CCS@GOx@HA) is fabricated, which owns the tumor targeting ability and can undergo tumor microenvironment responsive cascade reaction to enhance the tumor therapeutic efficiency significantly. Surface modification of nanocomposite with hyaluronic acid enables the targeted delivery of the nanocomposite to cancer cells. Acid-triggered decomposition of nanocomposite in cancer cell results in the release of Cu+ , Se2- and GOx. The Cu+ improves the Fenton-like reaction with endogenous H2 O2 to generate highly toxic • OH for CDT. While GOx can not only catalyze the in situ generation of endogenous H2 O2 , but also accelerate the consumption of intratumoral glucose to reduce nutrient supply in tumor site. In addition, Se2- further improves the therapeutic effects of CDT by upregulating the reactive oxygen species (ROS) in tumor cells. Meanwhile, the surface modification endows the nanocomposite the good water dispersibility and biocompatibility. Moreover, in vitro and in vivo experiments demonstrate satisfactory anti-cancer therapeutic performance by the synergistic cascade function of CCS@GOx@HA than CDT alone.


Assuntos
Nanocompostos , Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Catálise , Glucose , Ácido Hialurônico , Nanocompostos/uso terapêutico , Peróxido de Hidrogênio , Linhagem Celular Tumoral , Microambiente Tumoral
14.
Nanomedicine (Lond) ; 19(5): 397-412, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38112257

RESUMO

Aim: This report proposes using the Hill model to assess the benchmark dose, the 50% lethal dose, the cooperativity and the dissociation constant while analyzing cell viability data using nanomaterials to evaluate the antitumor potential while combined with radiofrequency therapy. Materials & methods: A nanocomposite was synthesized (graphene oxide-polyethyleneimine-gold) and the viability was evaluated using two tumor cell lines, namely LLC-WRC-256 and B16-F10. Results: Our findings demonstrated that while the nanocomposite is biocompatible against the LLC-WRC-256 and B16-F10 cancer cell lines in the absence of radiofrequency, the application of radiofrequency enhances the cell toxicity by orders of magnitude. Conclusion: This result points to prospective studies with the tested cell lines using tumor animal models.


Assuntos
Grafite , Nanocompostos , Animais , Estudos Prospectivos , Linhagem Celular Tumoral , Grafite/farmacologia , Nanocompostos/uso terapêutico
15.
ACS Appl Mater Interfaces ; 15(50): 58041-58053, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38038271

RESUMO

Conventional inorganic semiconductor nanoparticles have emerged as photothermal agents in photothermal therapy and as sonosensitizers in sonodynamic therapy. However, their weak drug-loading capabilities and the deficient techniques for multifunctional inorganic nanoparticles limit their applications. A bismuth-based gold-crowned nanocomposite (BACN) was rationally designed and successfully synthesized and could then be used to prepare nanoplatforms with excellent biocompatibilities for synergistic therapy and real-time imaging. Because of the constituent gold nanoparticles and pyridine, the nanoplatforms functioned as drug delivery vehicles, ultrasonically activated sonosensitizers, and photothermal agents. The BACNs exhibited excellent photothermal conversion efficiency (79.1%) in the second near-infrared biowindow (1064 nm). Cellular and mouse experiments demonstrated that under laser and ultrasound irradiation bufalin-loaded BACNs significantly reduced cancer cell counts and completely eradicated tumors, along with great therapeutic biosafety and no discernible recurrence. Additionally, BACNs were also used as contrast agents in computed tomography-photoacoustic imaging. The versatile BACN nanoplatform with multitreatment effects and trimodal imaging properties shows immense potential as an antitumor nanotherapeutic system.


Assuntos
Nanopartículas Metálicas , Nanocompostos , Nanopartículas , Neoplasias , Animais , Camundongos , Ouro/farmacologia , Bismuto , Nanopartículas Metálicas/uso terapêutico , Fototerapia/métodos , Nanopartículas/uso terapêutico , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Nanocompostos/uso terapêutico , Linhagem Celular Tumoral
16.
Nanotechnology ; 35(7)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37976543

RESUMO

The limited options of anabolic drugs restrict their application potential in osteoporosis treatment, despite their theoretical superiority in therapeutic efficacy over antiresorptive drugs. As a prevailing strategy, nano-delivery systems could offer a wider choice of anabolic drugs. In this study, calcium phosphate nanocomposites incorporated with simvastatin (Sim) with periostin-targeting ability were designed and prepared for osteoporosis treatment. Carboxymethyl dextran (CMD) as an anionic and hydrophilic dextran derivative was used to stabilize CaP. In addition, periosteum-targeted peptide (SDSSD) was further grafted on CMD to achieve the bone targeting function. In a one-step coordination assembly strategy, hydrophobic anabolic agent Sim and SDSSD-CMD graft (SDSSD-CMD) were incorporated into the CaP nanoparticles forming SDSSD@CaP/Sim nanocomposites. The resulting SDSSD@CaP/Sim possesses uniform size, great short-term stability and excellent biocompatibility. Moreover, SDSSD@CaP/Sim exhibited a reduced release rate of Sim and showed slow-release behaviour. As anticipated, the nanocomposites exhibited bone bonding capacity in both cellular and animal studies. Besides, SDSSD@CaP/Sim achieved obviously enhanced osteoporosis treatment effect compared to direct injection of Simin vivo. Therefore, our findings highlight the potential of SDSSD-incorporated and CaP-based nanocomposites as a viable strategy to enhance the therapeutic efficacy of anabolic drugs for osteoporosis treatment.


Assuntos
Nanocompostos , Osteoporose , Animais , Sinvastatina/farmacologia , Sinvastatina/uso terapêutico , Osteoporose/tratamento farmacológico , Peptídeos/farmacologia , Peptídeos/uso terapêutico , Fosfatos de Cálcio/química , Nanocompostos/uso terapêutico
17.
ACS Appl Mater Interfaces ; 15(47): 54322-54334, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-37967339

RESUMO

Phototherapy has great application prospects in superficial tumors, such as melanoma, esophageal cancer, and breast carcinoma, owing to the advantages of noninvasiveness, high spatiotemporal selectivity, and less side effects. However, classical phototherapies including photodynamic and photothermal therapy still need to settle the bottleneck problems of poor efficacy, inevitable thermal damage, and a high rate of postoperative recurrence. In this study, we developed a nanocomposite with excellent optical properties and immune-stimulating properties, termed PBP@CpG, which was obtained by functionalizing black phosphorus (BP) with polydopamine and further adsorbing CpG. Benefiting from the protection of polydopamine against BP, ideal light absorption, and photoacoustic conversion properties, PBP@CpG not only enables precisely delineation of the tumor region with photoacoustic imaging but also powerfully disrupts the plasma membrane and cytoskeleton of tumor cells with a photoacoustic cavitation effect. In addition, we found that the photoacoustic cavitation effect was also capable of inducing immunogenic cell death and remarkably strengthening the antitumor immune response upon cooperating with immune adjuvant CpG. Therefore, PBP@CpG was expected to provide a promising nanoplatform for optical theranostics and herald a new strategy of photoimmunotherapy based on the photoacoustic cavitation effects and immunostimulatory effect.


Assuntos
Neoplasias da Mama , Nanocompostos , Nanopartículas , Técnicas Fotoacústicas , Humanos , Feminino , Fósforo , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/tratamento farmacológico , Fototerapia , Imunoterapia , Nanocompostos/uso terapêutico , Técnicas Fotoacústicas/métodos , Linhagem Celular Tumoral
18.
J Nanobiotechnology ; 21(1): 365, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37798714

RESUMO

Photothermal therapy (PTT) is a novel cancer treatment using a photoabsorber to cause hyperthermia to kill tumors by laser irradiation. Prussian blue nanoparticles (PB NPs) are considered as next-generation photothermal agents due to the facile synthesis and excellent absorption of near-infrared light. Although PB NPs demonstrate remarkable PTT capabilities, their clinical application is limited due to their systemic toxicity. Bacterial cellulose (BC) has been applied to various bio-applications based on its unique properties and biocompatibility. Herein, we design composites with PB NPs and BC as an injectable, highly biocompatible PTT agent (IBC-PB composites). Injectable bacterial cellulose (IBC) is produced through the trituration of BC, with PB NPs synthesized on the IBC surface to prepare IBC-PB composites. IBC-PB composites show in vitro and in vivo photothermal therapeutic effects similar to those of PB NPs but with significantly greater biocompatibility. Specifically, in vitro therapeutic index of IBC-PB composites is 26.5-fold higher than that of PB NPs. Furthermore, unlike PB NPs, IBC-PB composites exhibit no overt toxicity in mice as assessed by blood biochemical analysis and histological images. Hence, it is worth pursuing further research and development of IBC-PB composites as they hold promise as safe and efficacious PTT agents for clinical application.


Assuntos
Nanocompostos , Nanopartículas , Neoplasias , Animais , Camundongos , Terapia Fototérmica , Nanopartículas/química , Fototerapia , Nanocompostos/uso terapêutico , Nanocompostos/química , Neoplasias/terapia
19.
Adv Sci (Weinh) ; 10(30): e2303911, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37698584

RESUMO

The emergence of multi-drug resistant (MDR) pathogens is a major public health concern, posing a substantial global economic burden. Photothermal therapy (PTT) at mild temperature presents a promising alternative to traditional antibiotics due to its biological safety and ability to circumvent drug resistance. However, the efficacy of mild PTT is limited by bacterial thermotolerance. Herein, a nanocomposite, BP@Mn-NC, comprising black phosphorus nanosheets and a manganese-based nanozyme (Mn-NZ) is developed, which possesses both photothermal and catalytic properties. Mn-NZ imparts glucose oxidase- and peroxidase-like properties to BP@Mn-NC, generating reactive oxygen species (ROS) that induce lipid peroxidation and malondialdehyde accumulation across the bacterial cell membrane. This process disrupts unprotected respiratory chain complexes exposed on the bacterial cell membrane, leading to a reduction in the intracellular adenosine triphosphate (ATP) content. Consequently, mild PTT mediated by BP@Mn-NC effectively eliminates MDR infections by specifically impairing bacterial thermotolerance because of the dependence of bacterial heat shock proteins (HSPs) on ATP molecules for their proper functioning. This study paves the way for the development of a novel photothermal strategy to eradicate MDR pathogens, which targets bacterial HSPs through ROS-mediated inhibition of bacterial respiratory chain activity.


Assuntos
Nanocompostos , Termotolerância , Humanos , Compostos de Manganês , Óxidos , Terapia Fototérmica , Espécies Reativas de Oxigênio , Temperatura , Trifosfato de Adenosina , Manganês , Nanocompostos/uso terapêutico
20.
Nanoscale ; 15(36): 14790-14799, 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37642471

RESUMO

Photodynamic therapy has been used as a treatment option for cancer; however, the existing TiO2 photosensitizer does not have the ability to specifically target cancer cells. This lack of selectivity reduces its effectiveness in overcoming cancer resistance. To improve photodynamic therapy outcomes, an innovative solution is proposed. In this study, we report on the compounding of a zwitterionic covalent organic polymer (COP) with a TiO2 photosensitizer for the first time. The aim is to overcome cancer cellular resistance. A one-pot synthetic strategy, which includes the construction of a porphyrin-based COP has been employed. This strategy has also been applied to the rapid preparation of anatase defective TiO2 (TiO2-x). To improve the hydrophilic and antifouling properties of the polymer, zwitterion L-cysteine has been conjugated with a porphyrin-based COP using a thiol-ene "click chemistry" reaction. The novel zwitterionic porphyrin-based COP has the ability to trigger biodegradation under the acid microenvironment due to the presence of acid-sensitive ß-thioether esters. When combined with TiO2-x, the resultant nanocomposite produces an enhanced photodynamic therapy effect for drug-resistant cancer cells under NIR laser irradiation. This is due to the strong mutual sensitization of zwitterionic porphyrin-based COP and TiO2-x. Importantly, the nanocomposite delivery system exhibits excellent cytocompatibility in the dark and has the potential to improve the accuracy of cancer diagnosis through fluorescence imaging. The results of this study demonstrate the potential application of this alternative nanocomposite delivery system for remote-controllable photodynamic therapy of tumors.


Assuntos
Nanocompostos , Neoplasias , Fotoquimioterapia , Porfirinas , Fármacos Fotossensibilizantes/farmacologia , Nanocompostos/uso terapêutico , Polímeros , Porfirinas/farmacologia , Neoplasias/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...